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The initial Idea
Summer Institute of Symbolic Logic, Cornell University (1957)

Church, Alonzo. "Application of recursive arithmetic to the problem of circuit synthesis."
Journal of Symbolic Logic 28.4 (1963).

-3-
APPLICATION OF RECURSIVE ARITHMETIC TO THE PROBLEM OF CIRCUIT SYNTHESIS
Alonzo Church
RESTRICTED RECURSIVE ARITHMETIC
Primitive symbols are individual (i.e., numerical) variables
X, ¥, 2, t,***, singulary functional constents 1., 12,---,1u, the

individual constant O, the accent ! as a notation for successor (of

a number), the notation ( ) for application of & singulary function
to its argument, connectives of the propositional calculus, and
brackets [ J.

Axioms are all tautologous wffs. Rules are modus ponensj; sub—
stitution for individual variables; mathematical induction,

from PIDSZ,Pl and SgP[ to infer Pj;

and any one of several alternative recursion schemata or sets of
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The initial Idea
Summer Institute of Symbolic Logic, Cornell University (1957)

Formal Specifications Circuit

Given: A0..n] such that Vie {0,n} Al €R # *
Generate: B[0..n] suchthat Yi,je{0.n}: i<j B[] < B[j ;
[-)

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization



Modern Program Synthesis

Real-world Code
User Goal

Method

Machine
Learning

& Class

‘Calculator ()
oz ()

trying to divide by 0
way of handling this: %/
ematics
INFINITY

rn [numerator, denominator]

Program Space
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Modern Program Synthesis

Input/Output Examples
Natural Language Specifications

Search-based Methods Real-world Code
User Goal Neural Program Synthesis

Inductive programming

Domain Specific L (DSL) Machine ':{>
omain Specific Language .
C++, Python, Java Leammg

Program Space
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Applications: Code Generation

Natural Language
Specifications

Real-world Code

User Goal

GitHub
Copilot :{>

C++, Python, etc. %

Program Space

sub Calculator()
sub addition(self, other)
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Applications: Code Generation

Natural Language
Specifications
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Applications: Data Management

Input/Output Examples

User Goal Excel Table

A B G
1 Nameand ID First name and last name ID #

2 Thomas, Rhonda 82132 Rhonda Thomas
3 |Emmett, Keara 34231 |Keara Emmett !

4 Vogel, James 32493

5 Jelen, Bill 23911

6 Miller, Sylvia 78356

7 Lambert, Bobby 25900
8

Sweet, Julie 65477

Custom DSL 9 Williams, Don 43920

F Ias h F i I I 10 Spake, Deborah 33488

Program Space
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Applications: many more...

e Smart auto-complete for IDEs (Hindle et al., 2012, Bhoopchand et al., 2016)
e Deobfuscating Android code (Bichsel et al., 2016)
e Automatic Bug identification (Goues et al., 2019)

e Code summarization (Zigner et. al, 2021)
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Overview

e Program Induction (Program by Example)
e Neural-Guided Program Synthesis
e Learning Program Representations

e Future Challenges
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FlashFill (Gulwani, 2011)

A B
Name and ID First name and last name ID #
Thomas, Rhonda 82132 Rhonda Thomas
Emmett, Keara 34231 |Keara Emmett '
Vogel, James 32493
Jelen, Bill 23911
Miller, Sylvia 78356
Lambert, Bobby 25900
Sweet, Julie 65477

Williams, Don 43920
10 Spake, Deborah 33488

O 0 N O U1 A W N =
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FlashFill (Gulwani, 2011)

_ A
1 NameandID

B

First name and last name

2 IThomas, Rhonda 82132 Rhonda Thomas

3 |Emmett, Keara 34231
4 Vogel, James 32493
Suggestions Jelen, Bill 23911
made by the | Miller, Sylvia 78356
inferred Lambert, Bo
program Sweet, Julie 65477
9 Williams, Don 43920
10 Spake, Deborah 33488

Keara Emmett
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FlashFill (Gulwani, 2011)

String expr P := Switch((b1,e1), -, (bn,en))
Boolb := diV--Vda
Conjunctd := @ A--Am,
Predicate # := Match(v;,r,k) | — Match(v;,r, k)

Traceexpre :=
Atomicexprf :=
|
|
Positionp :=

Integer expr ¢

Regular Expression r
TokenT :=
|

Concatenate(f;. -, f,)
SubStr(vi, p;,Pps)
ConstStr(s)
Loop(Aw : e)
CPos(k) | Pos(ry,r2,c)
k | kiw + k2
TokenSeq(T1, -, T,.)
C+ | [C]+
SpecialToken

Figure 1. Syntax of String Expressions P. v; refers to a free string
variable, while w refers to a bound integer variable. k£ denotes an

integer constant and s denotes a

string constant.

Excerpt of the Domain Specific
Language (DSL) for FlashFill

15th December 2021

[switch((bi,e1), -, (bn,en))]o = if ([bi]o) then [e1]o

else if ([b,]o) then [e,]o

else L
[div...vd,]Jo = [di]o V...V [dn] o
[Fin...Am]o = [m]o A...A [mn]o
[Match(vi,r.k)]o = Match(o(vi).r,k)
[Concatenate(fi,--,fn)] 0 = Concatenate([fi] o, -, [fr] o)

[Loop(Aw : e)] o = LoopR(Aw :e.1,0)
LoopR(Aw : e, k,0) = lett:= [e[k/w]] o in
if (t =_L)thene else
Concatenate(t, LoopR(Aw : e, k+1,0))

[subStr(vi,p;,po)l 0 = s[lp,] s: [po] ], where s = o(v;).
[ConstStr(s)]o = s
k ifk>0
[cPos(k)] s = {Length(s) +k  otherwise

[Pos(ri,r2,c)] s = tsuchthat 3t1,t25.t.0<t1 <t <to,
s[t1 : t-1) matches r1, s[t : t2] matches ra,
and ¢ is the c*”* such position (in increasing/

decreasing order if c is positive/negative.

Figure 2. Semantics of String Expressions P.

Introduction to Program Synthesis
Advanced Topics in Machine Learning and Optimization

14



FlashFill (Gulwani, 2011)

String expr P := Switch((by,e1), -, (bn,e,))
Boolb := diV--Vda
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Regular Expression r
TokenT :=
|

Concatenate(f;. -, f,)
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variable, while w refers to a bound integer variable. k£ denotes an

integer constant and s denotes a

string constant.

Excerpt of the Domain Specific
Language (DSL) for FlashFill

15th December 2021

[switch((bi,e1), -, (bn,en))]o = if ([bi]o) then [e1]o

else if ([b,]o) then [e,]o

else L
[div...vd,]Jo = [di]o V...V [dn] o
[Fin...Am]o = [m]o A...A [mn]o
[Match(vi,r.k)]o = Match(o(vi).r,k)
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[Loop(Aw : e)] o = LoopR(Aw :e.1,0)
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if (t =_L)thene else
Concatenate(t, LoopR(Aw : e, k+1,0))

[subStr(vi,p;,po)l 0 = s[lp,] s: [po] ], where s = o(v;).
[ConstStr(s)]o = s
k ifk>0
[cPos(k)] s = {Length(s) +k  otherwise

[Pos(ri,r2,c)] s = tsuchthat 3t1,t25.t.0<t1 <t <to,
s[t1 : t-1) matches r1, s[t : t2] matches ra,
and ¢ is the c*”* such position (in increasing/

decreasing order if c is positive/negative.

Figure 2. Semantics of String Expressions P.
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FlashFill (Gulwani, 2011)

GenerateStringProgram(S: Set of (o,s) pairs)
T:=0:
foreach (0,s) € S
T :=TU ({c},GenerateStr(o,s));

T := GeneratePartition(T);
' :={o| (0,8) € S};
foreach (7,e) € T:

let B[d|:= GenerateBoolClassifier(d,5'-5)
Let (61,€1),...,(0k,€x) be the k elements in

T in increasing order of Size(e).

9 return Switch((B[61],€1),...,(B[ok],&k));

Coc N O U A W N~

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization
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FlashFill (Gulwani, 2011)

GenerateStringProgram(S: Set of (o,s) pairs)
T:=0:
foreach (o,s) € S
T :=TU ({o},GenerateStr(o, s)); \
T := GeneratePartition(7');
' :={o| (0,8) € S};
foreach (7,e) € T':
let B[d|:= GenerateBoolClassifier(d,5'-5)
Let (61,€1),...,(0k,€x) be the k elements in

T in increasing order of Size(e).
9 return Switch((B[61],€1),...,(B[ok],&k));

Coc N O U A W N~

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization

Given each input/output pair
(o, s), generate all the
possible program
expressions that matches
the input o to the output s.
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FlashFill (Gulwani,

GenerateStringProgram(S: Set of (o,s) pairs)
T:=0:
foreach (0,s) € S

T :=TU({o},GenerateStr(o,s));

2011)

Partition the examples such
that inputs in the same

T := GeneratePartition(7);
o' =40 (0,8) €5};
foreach (7,e) € T':
let B[d|:= GenerateBoolClassifier(d,5'-5)
Let (61,€1),...,(0k,€x) be the k elements in
T in increasing order of Size(e).
9 return Switch((B[61],€1),...,(B[ok],&k));

Coc N O U A W N~

Introduction to Program Synthesis

—p partition are handled by the
same program in the
Switch construct.

15th December 2021 Advanced Topics in Machine Learning and Optimization
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FlashFill (Gulwani, 2011)

GenerateStringProgram(S: Set of (o,s) pairs)

; ?o.reaqi:’h (o,s) €S We construct a boolean
3 T := T U ({0}, GenerateStr(c, s)); classification scheme to
4 T := GeneratePartition(7); match each input to a
5 o = {o| (0,8) € S}; partition, hence, to a
6 |foreach (7,e) € T': / specific trace (program).
7| 1let B|5]|:= GenerateBoolClassifier(d,o'-5)
8 Let (61,€1),...,(0k,€xr) be the k elements in

T in increasing order of Size(e).
9 return Switch((B[61],€1),...,(B[ok],&k));
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FlashFill (Gulwani, 2011)

GenerateStringProgram(S: Set of (o,s) pairs)

T:=0:
foreach (0,s) € S
T :=TU ({c},GenerateStr(o,s));
T := GeneratePartition(T);
' :={o| (0,8) € S};
foreach (7,e) € T:

Coc N O U A W N~

T in increasing order of Size

let B[d|:= GenerateBoolClassifier(d,5'-5)
Let (61,€1),...,(0k,€x) be the k elements in
e).

9 |return Switch((B[61],€1),...,(B[ok],&k));

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization

We return the complete
expression, that match each
new input to its
correspondent program
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FlashFill (Gulwani, 2011)

EXAMPLE 10 (Phone Numbers). The goal here is to parse phone
numbers that occur in multiple formats and transform them into a
uniform format, adding a default area code of “425” if the area
code is missing. This example was provided by the product team.

| Input vy || Outpur |

323-708-7700 323-708-7700
(425)-706-7709 || 425-706-7709
510.220.5586 510-220-5586
235 7654 425-235-7654
745-8139 425-745-8139

String Program:
Switch((b1,e1), (b2, e2)), where

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization

by = Match(vi, NumTok, 3), ba = —Match(vi, NumTok, 3),

e1 = Concatenate(SubStr2(vi, NumTok, 1), ConstStr(“-"),
SubStr2(vy, NumTok,2), ConstStr(“-"),
SubStr2(vi, NumTok, 3))

ey = Concatenate(ConstStr(“425-"), SubStr2(v,, NumTok, 1),
ConstStr(“-"), SubStr2(v,, NumTok,2))

21



EXAMPLE 10 (Phone Numbers). The goal here is to parse phone
numbers that occur in multiple formats and transform them into
uniform format, adding a default area code of “425” if t
code is missing. This example was provided by the pro

FlashFill (Gulwani, 2011)

| Input vy || Outpur
323-708-7700 323-708-7700
(425)-706-7709 425-706-77,54
510.220.5586 510-220.7586
235 7654 732737654
2 —53-745-8139

String Program:

Switch((b1,e1), (b2,e2)), where

15th December 2021
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by = Match(vi, NumTok, 3),|b2 = —Match(vi, NumTok, 3)

e1 = Concatenate(SubStr2(v,, NumTok, 1), ConstStr(“-"),
SubStr2(vy, NumTok,2), ConstStr(“-"),
SubStr2(vi, NumTok, 3))

e2 = Concatenate(ConstStr(“425-"), SubStr2(vi, NumTok, 1),
ConstStr(“-"), SubStr2(v,, NumTok,2))

22




Program Induction (Program by Example)

e The generated program must satisfy all the examples provided

e Conflicting or ambiguous examples

o How do we cope with that? Are there any strategies we can use to disambiguate?

e Heuristics needed to improve the results

e DSL language must be expressive enough

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization
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Overview

e Program Induction (Program by Example)
e Neural-Guided Program Synthesis
e Learning Program Representations

e Future Challenges

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization
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Overview

e Program Induction (Program by Example)
e Neural-Guided Program Synthesis
e Learning Program Representations

e Future Challenges
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Neural-guided Program Synthesis

e Exponential program space
e Use a deep learning model to guide the program space search
e Deep learning deals with ambiguous examples

e |earn programs that can better generalize

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization

26



Neural-guided Program Synthesis

e Exponential program space
e Use a deep learning model to guide the program space search
e Deep learning deals with ambiguous examples

e |earn programs that can better generalize

T:E— A m(e) = softmax(f(e))
e; € E, a;11 = argmax(m(e;))

Introduction to Program Synthesis

15th December 2021 Advanced Topics in Machine Learning and Optimization 27



Neural-guided Program Synthesis

e Exponential program space
e Use a deep learning model to guide the program space search
e Deep learning deals with ambiguous examples

e |earn programs that can better generalize

Search Policy | 77 : & — A m(e) = softmax(f(e))

e; € E, a;11 = argmax(m(es))

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization
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Neural-guided Program Synthesis

e Exponential program space

e Use a deep learning model to guide the program space search

e Deep learning deals with ambiguous examples

e |earn programs that can better generalize

T:E— A m(e) = softmax(f(e))

Choose the best
next instruction

15th December 2021

e; € E, a;11 = argmax(m(es))

Introduction to Program Synthesis
Advanced Topics in Machine Learning and Optimization
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Neural-guided Program Synthesis

(Discrete)
Neural Network Program Space

|
|l_
I

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization

Code
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DeepCoder (Balog et al., 2017)

Input/output Examples
Encoding

15th December 2021

Ja\
l

—>

01 03 02 06 01

Introduction to Program Synthesis
Advanced Topics in Machine Learning and Optimization
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(Discrete)
Program Space

31



DeepCoder (Balog et al., 2017)

5 = s
— o w T =
i 1. EyBys 852 s £ 2
— -~ = _ —_ -~ = - o P g Y W 5 = X S 58 X $
$ T E Q@ £ &8 £ 8 § £ AAE EE S T E R EETE I NR 4 « = = 8 § = R
0O 0 1 0 0 0 .0 .o..o o.o 2 0 .o_.o 1 oMo o 1 0 2 1.0 .0 0 .0

Figure 2: Neural network predicts the probability of each function appearing in the source code.
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Neural-guided Program Synthesis

(Discrete)
Neural Network Program Space

|
|l_
I

Introduction to Program Synthesis
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Code
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Neural-guided Program Synthesis

(Discrete)
Neural Network Program Space

I}
I
It

Introduction to Program Synthesis
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Code
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Neural Programmer-Interpreters
(Reed & de Freitas 2016)

T |
|
|
| - Ny —_—
: |
: l
Execution Traces Neural Network Code

Program Library

Introduction to Program Synthesis
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Neural Programmer-Interpreters
(Reed & de Freitas 2016)

Execution Trace

Environment

@ - @ - @ - @
t=2 t=3 t=4

t=1

Introduction to Program Synthesis
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Neural Programmer-Interpreters
(Reed & de Freitas 2016)

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program id 2, arguments a, stop threshold «
2: function RUN(z, a)

3:

4
5
6:
i/

o

h+ 0,7+ 0,p<+ M° > Init LSTM and return probability.
while » < a do
S  fenc(€e,a), h < fistm(s,p, h) > Feed-forward NPI one step.

s fmul(h)~ k < fpr()_q(h)~(l’2 — furg(h)

ip < arg max(]\[;?y)Tk > Decide the next program to run.
j=1..N

if : == ACT then e + f.,.(e,p,a) > Update the environment based on ACT.

else RUN(i5, as) > Run subprogram 7o with arguments a,

15th December 2021

Introduction to Program Synthesis
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Neural Programmer-Interpreters
(Reed & de Freitas 2016)

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program id 2, arguments a, stop threshold «
2: function RUN(z, a)

3

s i A

o

h+ 0,7+ 0,p<+ M°

w

> Init LSTM and return probability.
ile r < o do

S  fenc(€e,a), h < fistm(s,p, h) > Feed-forward NPI one step.

e fmul(h)~ k + fpr()_q(h)~"’2 T fm'g(h)

io ¢— arg max(M;-‘.‘fy)Tk > Decide the next program to run.
j=1.N

if : == ACT then e + f.,.(e,p,a) > Update the environment based on ACT.

else RUN(i5, as) > Run subprogram 7o with arguments a,

15th December 2021
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Neural Programmer-Interpreters
(Reed & de Freitas 2016)

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program id 2, arguments a, stop threshold «
2: function RUN(z, a)

3: h+ 0,7+ 0,p<+ M° > Init LSTM and return probability.

4 while » < o do

5 S  fenc(€e,a), h < fistm(s,p, h) > Feed-forward NPI one step.

6: 4= fendlh), k< foroglh), a2 < farg(h)

i/ io ¢— arg max(M;-‘.‘fy)Tk > Decide the next program to run.
i=1.N

8: if : == ACT then e + f.,.(e,p,a) > Update the environment based on ACTJ

9: else RUN(io, ay) > Run subprogram 7, with arguments a,

Introduction to Program Synthesis

15th December 2021 Advanced Topics in Machine Learning and Optimization 39



Neural Programmer-Interpreters
(Reed & de Freitas 2016)

ADD
X L-ADD1 L ADD1 L. ADD1
input1|0 0 0O 9 6 WRITE OUT 1 WRITE OUT 2 WRITE OUT 2
CARRY CARRY LSHIFT
— PTR CARRY LEFT  PTRCARRY LEFT  PTRINP1LEFT
input2/0 0 1 2 5 WRITE CARRY 1 WRITE CARRY 1 PTRINP2 LEFT
PTR CARRY RIGHT ~ PTR CARRY RIGHT PTR CARRY LEFT
car LSHIFT LSHIFT PTR OUT LEFT
VIGO0 il PTR INP1 LEFT PTR INP1 LEFT
PTR INP2 LEFT PTR INP2 LEFT
ouput|l0 0 O 2 1 PTRCARRY LEFT  PTR CARRY LEFT
. ; e PTR OUT LEFT PTR OUT LEFT
(a) : >f<amp R BCERLE gg “"2 po;-nzte’r’s (b) Actual trace of addition program generated by our model
used for computing + 125 = 221" on the problem shown to the left. Note that we substituted

Carry step is being implemented. the ACT calls in the trace with more human-readable steps.

Introduction to Program Synthesis
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input 1
input 2
carry

output

(a) Example scratch pad and pointers
used for computing “96 + 125 = 221",
Carry step is being implemented.

15th December 2021

Neural Programmer-Interpreters
(Reed & de Freitas 2016)

0
0
0

0

X

0 0 9
01 2
X\
o' i .4
X
00 2

—

1

Introduction to Program Synthesis
Advanced Topics in Machine Learning and Optimization

ADD

L4aDD1 4~ ADD1 L. ADD1

WRITE OUT 1 WRITE OUT 2 WRITE OUT 2

CARRY CARRY LSHIFT
PTR CARRY LEFT PTR CARRY LEFT  PTRINP1 LEFT
WRITE CARRY 1 WRITE CARRY 1 PTR INP2 LEFT
PTR CARRY RIGHT PTR CARRY RIGHT PTR CARRY LEFT

LSHIFT LSHIFT PTR OUT LEFT

PTR INP1 LEFT PTR INP1 LEFT

PTR INP2 LEFT PTR INP2 LEFT

PTR CARRY LEFT PTR CARRY LEFT

PTR OUT LEFT PTR OUT LEFT

(b) Actual trace of addition program generated by our model
on the problem shown to the left. Note that we substituted
the ACT calls in the trace with more human-readable steps.

41
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Neural Programmer-Interpreters

(Reed & de Freitas 2016)

array*

=03 2 4 9 1
t‘1} ‘

T [3Z2 g g

=212 3 4 9 1

=3 2N g4 g
(a) Example scratch pad and pointers
used for sorting. Several steps of the
BUBBLE subprogram are shown.

BUBBLESORT
|“BUBBLE L. RESET L»BUBBLE
PTR 2 RIGHT LSHIFT PTR 2 RIGHT
BSTEP PTR 1 LEFT BSTEP
COMPSWAP PTR 2 LEFT COMPSWAP
SWAP 12 LSHIFT SWAP 12
RSHIFT PTR 1 LEFT RSHIFT
PTR1RIGHT PTR2LEFT PTR 1 RIGHT
PTR2 RIGHT ... PTR 2 RIGHT
LSHIFT
BSTEP PTR 1 LEFT BSTEP
COMPSWAP PTR 2 LEFT COMPSWAP
RSHIFT RSHIFT
PTR 1 RIGHT PTR 1 RIGHT
PTR 2 RIGHT PTR 2 RIGHT

(b) Excerpt from the trace of the learned bubblesort program.

Introduction to Program Synthesis

Advanced Topics in Machine Learning and Optimization
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Neural Programmer-Interpreters
(Reed & de Freitas 2016)

BUBBLESORT —;
array% \=EUBBLE —RESET .. L.BUBBLE ..
=03 2 4 9 1 PTR2RIGHT |LSHIFT PTR 2 RIGHT
BSTEP PTR 1 LEFT BSTEP
. X COMPSWAP | PTR2LEFT COMPSWAP
=1 3 2 4 9 1 SWAP 12 LSHIFT SWAP 12
RSHIFT PTR 1 LEFT RSHIFT
f N PTR 1 RIGHT | PTR2LEFT PTR 1 RIGHT
t=2 PTR 2 RIGHT | ... PTR 2 RIGHT
2.3 4 9 1 LSHIFT
BSTEP PTR1LEFT  BSTEP
t=3 [ O COMPSWAP  PTR2LEFT COMPSWAP
; RSHIFT RSHIFT
(a) Example scratch pad and pointers PTR 1 RIGHT PTR 1 RIGHT
used for sorting. Several steps of the PTR 2 RIGHT PTR 2 RIGHT
BUBBLE subprogram are shown. (b) Excerpt from the trace of the learned bubblesort program.

Introduction to Program Synthesis
15th December 2021 Advanced Topics in Machine Learning and Optimization
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AlphaNPI (Pierrot et al., 2019)

AlphaNPI
|- _________________________________________ 1
1 1
|
| = |
1
I N |:{> e — '
LS [ — — |
| > (——= = oo
1 Traces :
1
: Monte Carlo Tree :
: NPI Search I
|

Introduction to Program Synthesis

15th December 2021 Advanced Topics in Machine Learning and Optimization

Code
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AlphaNPI (Pierrot et al., 2019)

| |
| |
| I I
| | et < : R |
| I — St I Actor network
' enc ' f
) | I actor
I
| | \ LSTM core

I —»II{

et / f Istm ¥ I_ _________ |

[ 1 | |
: Program / I . Value network |—V

—_— [)f I

|

|

Encoder

t I embedding matrix he_s | fmluc
E |

I {

| Mprog :

' [ Value network
Program module

Introduction to Program Synthesis
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AlphaNPI (Pierrot et al., 2019)

AlphaNPI
|- _________________________________________ 1
1 1
|
| = |
1
! N |:{> l/l | \ !
_) 1
| R ﬁ E b |
1 Traces :
1
: Monte Carlo Tree :
: NPI Search I
|

" Ve

b € batches policy loss state loss
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AlphaNPI (Pierrot et al., 2019

prog : QUICKSORT

cnv state: list: [9 3409 19],pl : 0,p2: 6,p3: 0, stack: [0, 6,0], temp_vars: [-1], counter: 7

prior: None, gqvalue : 091
depth: 0

QUICKSORT_UPDATE

prog : QUICKSORT

env state: list: [3401999],pl :4,p2:6,p3:0,stack: [5,6,5,0, 3,0], temp_vars: [-1], counter: 7

prior: 0.98, gvaluc : 091
depth: |

QUICKSORT_UPDATE

prog : QUICKSORT

env state: list: [0 1 34999],pl : 1,p2:3,p3:0,stack: [5,6,5,2,

prior: 097, qvaluc: 091
depth: 2

[

, 2], temp_vars: [-1], counter: 7

STOP

prog : QUICKSORT

cnv state: list: [0 1 34999, pl: 1,p2:3,p3:0, stack: [5,6,5,2,

prior: 0.99, qvaluc: 091
depth: 3

w

, 2], temp_vars: [-1], counter: 7

The quicksort program (5)

b

2
3:
4

(S}

PUSH

for 0 to n do
QUICKSORT_UPDATE

end for

STOP
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Overview

e Program Induction (Program by Example)
e Neural-Guided Program Synthesis
e Learning Program Representations

e Future Challenges
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Overview

e Program Induction (Program by Example)
e Neural-Guided Program Synthesis
e Learning Program Representations

e Future Challenges
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Learning Program Representations

1. Discrete search space vs Continuous search space
Code = semantic + structural components

Large source code datasets (e.g., Github, Bitbucket)

B W N

Program embeddings can be used for many downstream tasks

Introduction to Program Synthesis
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Learning Program Representations

Program Dataset
(e.g., Github)

15th December 2021

(= o - - - - — -
I |
[ |
| (o= ===- > I
| | Encoder ! _| Decoder :
I

I I
I |

Program
Embedding
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Code Transformer (Zugner et. al, 2021)

1. Learn a language-agnostic model for code over multiple languages

2. Exploit both context and structure of the source code
a. They shows that context alone leads to lower performance

3. Extends Transformer to encode possible structure of the input domain

4. Provide good results on the code summarization task

Introduction to Program Synthesis
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Code Transformer (Zugner et. al, 2021)

Source Code as Sequence of Tokens Source Code as Abstract Syntax Tree

7N

X . F“\]/i
def get model(): -
if condition:<——{2
train()
3 ... [20 tokens]
else: p

return model <—<@

Context Structure

Introduction to Program Synthesis
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Code Transformer (Zugner et. al, 2021)

------ >
shortest ‘
path
length ‘
................. )
ancestor
distance
....... PPR
sibling score to
distance node 5
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Code Transformer (Zugner et. al, 2021)

encodings B (0.1) infer

Source Code as Sequence of Tokens Code Transformer Code
(1) ~ Summarization
& : ' Task
def get _model(): : - i(1,4) = .ﬁ‘yOO e ——
if condition: «<—— 2 i(1,4) = PPR(1,4) =0.27 =5 def [MASK]
train() S 213 O S T S
(3 L o o kon Bakusiel | \ 5 O0@ v
else: s . : A _ OO0 |:
return model 4__( 4 ) . | Token d|$tance ] '
> encodings AST distance ‘“%F“ '
Source Code as Abstract Syntax Tree P \ ----- > e“jo‘jiy e ; arn
(1 ) () A NCrmemememeenenane g d —09 || DECODER
~ Attention Layer 2 : ‘
{0 o.1 ‘
: ' Attention ; {}
- : 2 values i (0.9) train_model
v v v : (0.5) f£it
E (0.3) cross_valid
4) Output E (0.1) zero_grad
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Code Transformer (Zugner et. al, 2021)

Attention(Q, K, V) = soft (QKT)V
ention(Q, K, V) = softmax(——
v dg

A;j=Q} K; = E] W/ WyE; + E} W) Wilg(ri— )|+ v’ WiE; + v'Wiid(ri—;)

The Attention formula is adapted from Dai et al. (2019) and Yang et al. (2019). They include
the relative position encoding.

T";— j indicates the relative distance between token i and token j in the sequence.

Introduction to Program Synthesis 56
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Code Transformer (Zugner et. al, 2021)

static String execCommand(File f, String... cmd) throws IOException {
String[] args = new String[cmd.length + 1];
System.arraycopy(cmd, 0, args, 0, cmd.length);
args[cmd.length] = f.getCanonicalPath();
String output = Shell.execCommand (args) ;

return output;

Introduction to Program Synthesis
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Code Transformer (Zugner et. al, 2021)

static String| MASKED kFile f, String... cmd) throws IOException ({

String[] args = new String[cmd.length + 1];
System.arraycopy(cmd, 0, args, 0, cmd.length);
args[cmd.length] = f.getCanonicalPath();
String output = Shell.execCommand (args) ;

return output;
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Code Transformer (Zugner et. al, 2021)

static String| MASKED |(File f, String... cmd) throws IOException ({
String[] args = new String[cmd.length + 1];
System.arraycopy(cmd, 0, args, 0, cmd.length);
args[cmd.length] = f.getCanonicalPath();
String output = Shell.execCommand (args) ;
return output;
}
Model Prediction
GREAT get canonical path
code2seq exec
Ours w/o structure get output

CODE TRANSFORMER exec command

Ground Truth exec command
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LEAPS (Trivedi et al., 2021)

Latent

Program
Program p ~
el
def run(): y_\\q
if frontIsClear(): L
move() . — 1O
se: }.4
turnleft() =]
®,
()
Execute 1 O
Environment l

ay1,0a2,...,0¢ ay,ag,...

L. @ph» — |

Cross Entropy Method

i Candidate
i Latent Program
Reconstructed >
Program p e
=<
def run()s .
if frontisClear(): }.{
S— move() =]
else: )
turnleft() =]
,:4
Execute 1 <
Envionment = | e
Environment

ay,az,...,a4

(a) Learning Program Embedding Stage
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Candidate
Latent Programs

‘A.I:}:I.:

b

YOOC

@

_’.—

Predicted
Program

def run()s

if frontisClear():
move( )

olser
turnLeft()

(b) Latent Program Search Stage
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LEAPS (Trivedi et al., 2021)

Reconstruction
Loss Program /0

S
)OO0

2\

7

O

7

Execute \"l Executel
I:nvm v Environment
)
a1,092,...,0¢ ay1,0a2,...,044 ay,az,....a

. — |

&

(a) Learning Program Embedding Stage

Cross Entropy Method

"""""""" Next
: Candidate Candidate
i Latent Program Latent Programs
O =
O 3
= @
) =~
=< 10
O =] ———
=] Q
5 =
= O
9
O

turnLeft()

(b) Latent Program Search Stage
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LEAPS (Trivedi et al., 2021)

i Latent Program Latent Programs

Reconstructed
Program p Program p
def run(): def run()s
if frontisClear(): if frontisClear()s
move() —_— move()
*turntete()  arntett()
Execute | = Execute |
Environment 1 Environment
Behaviour g} .1 ?
Loss
a1,a9,...,04 ay,ag,...,04 ay,ag,...,04
L. — |

(a) Learning Program Embedding Stage

Cross Entropy Method
................................ o —
Candidate Candidate

N

)

}ﬁ;ﬂ

® =]

0O S

=< &

O =l

= ~ 10O

'® =] ——— .
M4 Q

S <

o ”

=<

p
Q

Predicted
Program
def run()s

if frontisClear():
move() -

olser
turnLeft()

(b) Latent Program Search Stage
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LEAPS (Trivedi et al., 2021)

Cross Entropy Method
g o
: Candidate Candidate
i Latent Program Latent Programs
Latent o,
Program [0 ng Reconstructed ~ :g:
°9 el Program P e’ %
def run(): bt def run(): >.4 2
if frontIsClear(): 4 if frontisClear()s }.4 - "‘ _
mave() —_— —r " — — _ move() ;@4 " *
*turntete() Q  arntett() o O
9, <
Execute l O Execute 1 -
Environment l Enviionment. @@= | | e et e e sa e et e e s e nresa oo S
Predicted
Environment Program
+ + =
ot Tea()s
Aif frontisClear():
sove PU—
Ay, A2, ..., 44 Ay,a2,...,a0¢ ay,a2,...,a4¢ Qi
turnleft
| — 1 | 0

(a) Learning Program Embedding Stage
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(a) STAIRCLIMBER
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LEAPS (Trivedi et al., 2021)

(b) FOURCORNER

L T

(¢c) TOPOFF (d) MAZE (e) CLEANHOUSE

Tasks from the Karel domain
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LEAPS (Trivedi et al., 2021)
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LEAPS (Trivedi et al., 2021)

(AL IFHH

(a) STAIRCLIMBER (b) FOURCORNER (¢c) TOPOFF (d) MAZE (e) CLEANHOUSE

Tasks from the Karel domain

https://clvrai.github.io/leaps/
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15th

Program Synthesis as Latent Continuous Optimization
(Liskowski et al., 2020)

Combine Evolutionary Algorithm + Program Embeddings
Use CMA-ES as numerical optimization strategy
Benchmark their method on a set of 16 program synthesis tasks
a. The tasks are very simple programs, such as Mal'cev term or discriminators
Mal’cev term : m(z,z,y) =m(y,z,z) =y Discrim.: t*(x,y,2) = y
z Hxr=y

Introduction to Program Synthesis
December 2021 Advanced Topics in Machine Learning and Optimization
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Program Synthesis as Latent Continuous Optimization

Initial Population

15th December 2021

(Liskowski et al., 2020)

Selection Mating Mutation/Crossover

Evaluation
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Program Synthesis as Latent Continuous Optimization
(Liskowski et al., 2020)

Phase 1: Problem-agnostic program embedding

Program l
embedding
E:g:g:: L p Encoder Ll Decoder | | Reconstruction
generator (training) (training) loss
Program
semantics
Semantic loss
Program | Is(p)| . (only in
execution NPO-S)
Phase 2: Program synthesis via continuous optimization
Bandom Initial mean | Candidate Candidate |
program vector solution program
Encoder < [ [ o Decoder = | | Fitness
Py (querying) o CMA-ES % (querying) P, function
S D t
Y ! ! ;
Initialization of - Working
CMA-ES z > parameters of the
population
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Program Synthesis as Latent Continuous Optimization
(Liskowski et al., 2020)

Phase 1: Problem-agnostic program embedding
Program l
embedding
E:g:g:: L p Encoder Ll Decoder | | Reconstruction
generator (training) (training) loss
Program
semantics
Semantic loss
Progr:n:] = S(P)t—  (onlyin
executio NPO-S)
Phase 2: Program synthesis via continuous optimization
Eamciom Initial mean | Candidate Candidate |
program vector solution program
Encoder < [ [ o Decoder = | | Fitness
Py (querying) o CMA-ES % (querying) P, function
S ) i
Y ! } ;
Initialization of : Working
CMA-ES z > parameters of the
population
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Program Synthesis as Latent Continuous Optimization
(Liskowski et al., 2020)

Phase 1: Problem-agnostic program embedding

15th December 2021

Program l
embedding
E:g:g:: L p Encoder Ll Decoder | | Reconstruction
generator (training) (training) loss
Program
semantics
Semantic loss
Program | Is(p)| . (only in
execution NPO-S)
Phase 2: Program synthesis via continuous optimization
Eamciom Initial mean | Candidate Candidate |
program vector solution program
Encoder < [ [ o Decoder = | | Fitness
Py (querying) o CMA-ES % (querying) P, function
S ) i
Y ! } ;
Initialization of : Working
CMA-ES z > parameters of the
population
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AutoML-Zero (Real et al., 2020)

: Google Al Blog

The latest from Google Research

AutoML-Zero: Evolving Code that Learns
Thursday, July 9, 2020

Posted by Esteban Real, Staff Software Engineer and Chen Liang, Software Engineer, Google Research,
Brain Team

Machine learning (ML) has seen tremendous successes recently, which were made possible by ML
algorithms like deep neural networks that were discovered through years of expert research. The
difficulty involved in this research fueled AutoML, a field that aims to automate the design of ML
algorithms. So far, AutoML has focused on constructing solutions by combining sophisticated
hand-designed components. A typical example is that of neural architecture search, a subfield in
which one builds neural networks automatically out of complex layers (e.g., convolutions, batch-
norm, and dropout), and the topic of much research.

An alternative approach to using these hand-designed components in AutoML is to search for
entire algorithms from scratch. This is challenging because it requires the exploration of vast and
sparse search spaces, yet it has great potential benefits — it is not biased toward what we already
know and potentially allows for the discovery of new and better ML architectures. By analogy, if one
were building a house from scratch, there is more potential for flexibility or improvement than if one
was constructing a house usina onlv prefabricated rooms. However. the discovery of such housina

Q_ search blog

‘ Labels v

BB Archive Vv
Feed

W Follow @googleai

Give us feedback in our Product
Forums.
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AutoML-Zero (Real et al., 2020)

= t L algorithm
= d = dation set
= scalar/vector/matrix var at address X
def Evaluate(Setup, Predict, Learn, Dtrain,
Dvalid):
# Zero-initialize all the variables (sX/vX/mX).
initialize_memory()
Setup() # Execute setup instructions.

for (x, y) in Dtram
v0 = !

sum_loss = 0.0
for: (x; y) in Dvalid:
v0 =
Predlct() Only Predict(), not Learn().
s1 = Normalize(s1)
sum_loss += Loss(y, s1)
mean_loss = sum_loss / len(Dvalid)
# Use validation loss to evaluate the algorithm.

return mean_loss
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AutoML-Zero (Real et al., 2020)

= t L algorithm
= d = dation set
= scalar/vector/matrix var at address X
def Evaluate(Setup, Predict, Learn, Dtrain,
Dvalid):
# Zero-initialize all the variables (sX/vX/mX).
initialize_memory()
|Setup() # Execute setup instructions. |

for (x, y) in Dtram
v0 = !

sum_loss = 0.0
for: (x; y) in Dvalid:
v0 =
Predlct() Only Predict(), not Learn().
s1 = Normalize(s1)
sum_loss += Loss(y, s1)
mean_loss = sum_loss / len(Dvalid)
# Use validation loss to evaluate the algorithm.

return mean_loss
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AutoML-Zero (Real et al., 2020)

def Setup():
# Init weights

gaussian(0.0, 0.01) =

vl =
82 = -1.3

Multiplicative Interactions
def Learn(): # sO=label (SGD)

£ gl ¥ =28 Hcals puedick. Multiplicative Interactions
= s0 + s3 # Compute error (Flawed SGD)

v2 = s1 * vO # Gradient X g "
= Gradient Normalization

0.9, def Predict(): # vO=features vl = vl + v2 # Update weights
sl = dot(v0, vl1) # Prediction
iinearModal Random Weight Init
Flawed SGD Random Learning Rate
( ) = Best Evolved Algorithm
RelU | 4q¢ Setup() :
°
g Better Hard-coded LR s4 = 1.8e-3 # Learning rate
3 HParams Gradient Divided def Predict(): # vO=features
> Linear Model (SGD) by Input Norm v2 = v0 + vl # Add noise
E Loss Clipping v3 = v0 - vl # Subtract noise
3 v4 = dot(m0, v2) # Linear
<Lt’ sl = dot(v3, v4) # Mult.interac.
- m0 = s2 * m2 # Copy weights
% Linear Model Forward - B 50=
2 (No SGD) def Learn(): # sO=label
Weights: Normalize: s3 = s0 - s1 # Compute error
o=a"Wb y=f(0) = (0,1) m0 = outer(v3, v0) # Approx grad
oS e s2 = norm(m0) # Approx grad norm
def Setup(): azx):tp all/ NHPPQ?F?W 7777777777777 s5 = s3 / s2 # Normalized error
def Predict(): Bex g vb = sb * v3
. m0 = outer(v5, v2) # Grad
def Learn(): ml = ml + m0 # Update weights
- m2 = m2 + m1 # Accumulate wghts.
, ackwari m0 = s4 * mi
Empty-algoathm # Generate noise
vl = uniform(2.4e-3, 0.67)
0.5 o—
//
0 10 Experiment Progress (Log # Algorithms Evaluated) 12
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AutoML-Zero (Real et al., 2020)

def Setup():
# Init weights
vl = gaussian(0.0, 0.01)
s2 = -1.3
0.9, def Predict(): # vO=features

Random Learning Rate

Better

HParams Gradient Divided
by Input Norm

Noisy Input: Update W
a=x+e [ el e

b=x-¢

Backward

def Learn(): # sO=label

s3 = s1 / s2 # Scale predict.
sl = sO + s3 # Compute error
v2 = s1 * vO # Gradient

vl = vl + v2 # Update weights

Random Weight Init

Multiplicative Interactions
(SGD)

Multiplicative Interactions
(Flawed SGD)

Gradient Normalization

Best Evolved Algorithm

RelU
Hard-coded LR

Weights: Normalize:
o=a"Wh y=f(0) = (0,1)

def Setup():
s4 = 1.8e-3 # Learning rate

def Predict(): # vO=features

v2 = vO + vl # Add noise

v3 = v0 - vl # Subtract noise
v4 = dot(m0, v2) # Linear

sl = dot(v3, v4) # Mult.interac.
m0 = s2 * m2 # Copy weights

def Learn(): # sO=label

s3 = s0 - s1 # Compute error

m0 = outer(v3, v0) # Approx grad
s2 = norm(m0) # Approx grad norm
s6 = s3 / s2 # Normalized error

v5 = s5 * v3

m0 = outer(v5, v2) # Grad

ml = ml + m0 # Update weights

m2 = m2 + m1 # Accumulate wghts.

m0 = s4 * ml
# Generate noise
vl = uniform(2.4e-3, 0.67)

sl = dot(v0, vl1) # Prediction
Linear Model
(Flawed SGD)
el
c
3
o
[
> Linear Model (SGD)
o Loss Clipping
]
o
<
o
S Linear Model Forward
=] (No SGD)
def Setup():
def Predict():
def Learn():
Empty Algorithm
054 o—
//
0o 10
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Introduction to Program Synthesis

Advanced Topics in Machine Learning and Optimization

12

76



Future Challenges

1. Deal with underspecification to understand what the user really want
2. Study reasoning/planning over the latent space
3. Novel algorithm discovery with minimal supervision

4. Apply program synthesis techniques to everyday software programming
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Future Challenges

1. Deal with underspecification to understand what the user really want
2. Study reasoning/planning over the latent space
3. Novel algorithm discovery with minimal supervision

4. Apply program synthesis techniques to everyday software programming

For those interested in, some thesis are available on the broad topic of
program synthesis, interactive program synthesis, etc.!
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Thank you!

Questions?
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Resources

Program Induction

1.

2.

Gulwani, Sumit. "Automating string processing in spreadsheets using input-output examples." ACM Sigplan Notices 46.1 (2011).
(https://dl.acm.org/doi/pdf/10.1145/1925844.1926423)

Graves, Alex, et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471-476 (2016).
(https://doi.org/10.1038/nature20101)

Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014).
(https://arxiv.org/abs/1410.5401)

Balog, M., et al. "DeepCoder: Learning to write programs." 5th International Conference on Learning Representations, ICLR
2017-Conference Track Proceedings. 2019.

(https://arxiv.org/pdf/1611.01989)

Neural-Guided Program Synthesis

5.

6.

15th December 2021 Advanced Topics in Machine Learning and Optimization

Reed, Scott, and Nando De Freitas. "Neural programmer-interpreters." arXiv preprint arXiv:1511.06279 (2015).
(https://arxiv.org/abs/1511.06279)

Pierrot, Thomas, et al. "Learning Compositional Neural Programs with Recursive Tree Search and Planning." Advances in Neural
Information Processing Systems 32 (2019): 14673-14683.

(https://openreview.net/forum?id=rJg1aBHgUB)

Bunel, Rudy, et al. "Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis." International Conference on
Learning Representations. 2018.

(https://openreview.net/forum?id=H1Xw62kRZ)
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Resources

Learning Program Representations

1.

2.

15th December 2021 Advanced Topics in Machine Learning and Optimization

Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).
(https://arxiv.org/pdf/2107.03374)

Zugner, Daniel, et al. "Language-Agnostic Representation Learning of Source Code from Structure and Context." International
Conference on Learning Representations. 2021. (https://openreview.net/pdf?id=B1InbRNtwr)

Hellendoorn, Vincent J., et al. "Global relational models of source code." International Conference on Learning Representations. 2020.
(https://openreview.net/forum?id=Xh5eMZVONGF)

Allamanis, Miltiadis, Marc Brockschmidt, and Mahmoud Khademi. "Learning to Represent Programs with Graphs." International Conference
on Learning Representations. 2018. (https://openreview.net/forum?id=BJOFETXR-)

Trivedi, Dweep, et al. "Learning to Synthesize Programs as Interpretable and Generalizable Policies." Thirty-Fifth Conference on Neural
Information Processing Systems. 2021.

(https://papers.nips.cc/paper/2021/file/d37124c4c79f357cb02c65567 1a4 32fa-Paper.pdf)

Liskowski, Pawet, et al. "Program synthesis as latent continuous optimization: evolutionary search in neural embeddings."
Proceedings of the 2020 Genetic and Evolutionary Computation Conference. 2020.

(https://dl.acm.org/doi/pdf/10.1145/3377930.3390213)

Real, Esteban, et al. "Automl-zero: Evolving machine learning algorithms from scratch." International Conference on Machine Learning.
PMLR, 2020.

(http://proceedings.mir.press/v119/real20a/real20a.pdf)
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Resources

General Other Resources

1. Machine Learning for Big Code and Naturalness - https://ml4code.github.io/
General website which should serve as a gathering point of many research works related to program synthesis and machine learning for code.

See also the associated paper https://arxiv.org/abs/1709.06182.

2. MIT Course “Introduction to program synthesis” - https://people.csail.mit.edu/asolar/SynthesisCourse/index.htm
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find at this link https://www.microsoft.com/en-us/research/video/advanced-machine-learning-day-3-neural-program-synthesis/
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